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BROWNIAN APPROXIMATION TO FIRST PASSAGE PROBABILITIES

1. Introduction and Summary.

Let xI ,x21 ... be independent and identically distributed

with mean E(xI) a v . Let a. a xI + ... + xn , and for a<O< b

define-the stopping times Acccion F r

DTIC 'A;" '

T r(b) - inf(n: an > b1 (t -t(0)) TC (0))

and "

T - T(ab) - inf(n: a [a,b]}

The probabilities A-

Di ct .

|) P(T < M) ,

and

(2) P(T < m, sT > b)

arise in a variety of probability models. They are difficult to compute

exactly, but under certain conditions may be approximated by the

corresponding probabilities for the Brownian motion process. Siegmund

(1979) gave a heuristic argument based on Laplace transforms to show

that this approximation can be improved considerably by obtaining what

amounts to the first term in an Edgeworth type expansion of (1) and (2).

This method has been extended by Yuh (1980) for studying joint prob-

abilities of the form

(3) F(r < m, sm b-x)

and

(4) P(T<m, sT ) b, sa < b-x)

as well as related conditional probabilities, e.g. Pf{ <0samb-x) ,



which arise in the study of Kolmogorov-Smirnov statistics.

The purpose of this paper is to give a direct probabilistic

calculation of a one-term Edgeworth expansion to probabilities like (3).

The method is in principle applicable to (4) although the computations

are much more involved, and no details are given in this case. An ex-

ample of our results is as follows.

Theorem 1. Suppose V - 0, 2 . 1, and y -

b - m 1/2 . If the distribution of xI is strongly non-Zattice in

the sense that lim sup IE exp(itxl) I < 
j , then for each x > 0 as

P{T < m, sm < (C-x)m 1 2} - -(x)

(5)
- m 1/ 2 (4 +x) [2B + (y/6) (x2 -C2 -)] + o(m - 1/2)

Here E(s /2 E+s ) if 4 > O and 0 - Es if C O;
T+ T + +

(P and * denote the standard normal denity and distribution functions.

Remarks.
(a) Since P('t < ml P(s > b) + P( < m, s <b}, if

P(T < m, sm < b-x) were known exactly for all x > 0, then (at least

for continuous distributions) one would obtain P{T < m) by letting

x *+ 0 . Although it seems plausible that (5) should hold uniformly in x

for x near 0 , and in fact the right hand side of (5) with x - 0

agrees with the result obtained heuristically by Siegmund (1979), we

have been unable to prove this uniformity.

(b) In the case 4 - 0, Theorem I is equivalent to a result of

Iglehart (1974). In this case the asymptotic behavior of PT, >m) is
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known from fluctuation theory, e.g. Feller (1966), p.39 9, which shows

that (5) is true with x - 0, although a completely different proof

is involved.

(c) Siegmund (1979) has given a method for calculating B numerically.

(d) Under the stronger assumptions that the x's have a finite moment

generating function, Borovkov (1962) gave a complete asymptotic expansion

of (3). 'His methods use complex analysis, and the results are not

given in a form which permits simple comparisons with (5). Also

Borovkov's methods appear to handle the case x - 0 without difficulty,

although they do not seem to adapt readily to two-sided stopping rules.

(e) Analogous results may be obtained for arithmetic distributions.

(f) If for some n the characteristic function of s is integrable, Idn

one can obtain a similar expansion for the density - P{T <m, Sm  (-x)m 2,

which can be formally calculated by differentiating (5). As an applica-

tion one can improve the limiting distribution of the one sample

Kolmogorov-Smirnov statistic - see Yuh (1980) for details.

The remainder of this paper is arranged as follows. Theorem I is

proved in Section 2. Section 3 discusses the case ExI $0. In

Section 4, in the much simpler context of Brownian motion we describe

an alternative approach to these problems and use it to rederive the

results of Anderson (1960).

2. Proof of Theorem 1

Let Fn  denote the distribution function of sn, n - 0,1,...

It is easy to see that

PIT <M, s (c-x)m 2) f PIS s} cx~ , dP

(6) 1 4Tm m

f Fm ((-x)m2-s)dP f F (-xm -R) dP
{4r'm) - T m) m-T m



1 _ , /2
where R a C . Similarly

I t

Pis.,,> (c+x)m 2  - P{ C ., a m (>+x)m

(7) 1

D T }  F (x32 - a)] dP,
{T<Ml

(8) PIT < M, S < (c-x)m2  Ps > (c+x)m2

I I

- F [i-F(xm - RM) - FMT(-xm2"- RM)] dP.

The customary Edgeworth expansion applies to the first term on the

right hand side of (8); hence the remainder of the proof is a detailed

expansion of the integrand in (8) and an asymptotic evaluation of the

resulting integral.

To carry out the following analysis it is technically useful to

modify (8) to insure that in the integrand m-T" is not too small and

R is not too large. Let m I = m(I - (log m)-2). A consequence of

Lemnas 2 and 3 below is chat for some < - 0
I I I _

PIT < M, S m < ~(c-x)m 2 1 - PT<MIS R m < 2 CMa M (c-x)m 2 1 ~P{r C m, sa - P{ , 3 c, m * x-} +o(m

and hence by an argument similar to that leading to (8)

'< m, < (C-x)m 2 } - P{s > (c+x)m2 1

(9) ! 1

f (I (-F (2cm2 -_ R F (xu 2-R )]dP
(T<m, -< m2C m) m m- m

According to Petrov (1972) VI.3 Theorem 3

I 1 - 1

Fn(Xn 2) - (x) (y/6n2)(x-1) (P(x) + (l+1x 3 ) o(n 2Fn(n - (y6 n

I _ . 4
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where o(.) is uniform in x . This may be used to expand the integrand

in (9), and a subsequent expansion of the normal distribution function

* by Taylor's theorem show that uniformly on [T < m,, Ra < al/ 2 C ]

the integrand in (9) equals

! I I

I2 q(x, _r/m)2) j2R a + (y/3)Ex'/(--rlm)-]}
! I

+ O(m 2eR) + o(m2)

Suppose initially that C >0. By Dondker's theorem r/m converges

in law to a distribution with density function Ct- 3 /2 (j/t 1/2). By

the renewal theorem - - C;I/2 in law to a distribu-

tion with density function Ps > y}/E s + and according to

Siegmund (1975) it is asymptotically independent of r/m . horeover,

by Leumma I below (Rm  is uniformly integrable, so these limits may

be taken under the integral. Hence the integral in (9) is asymptotically

111 3
2 (28 + (y13){x 2 1(I-t)- II1(l-t) 2,O(x(-t 2 )t 2€(/t 2 ) dt ,

0

which after some calculus yields (5).

In the case C - 0 the argument is similar but much simpler. It

is obvious that T/m - 0 in probability and R - s .m T

Lemma 1. E 2 < - and (s - b, b > 0) ie uniforZy integrable.
14+ T(b)

Proof. That Es 2 < d is known from random walk theory, e.g. problem 6,T

p.232 of Spitzer t1976). From renewal theory it is known that

(sT - b u x )- x > y}dy ; and since Es T+ < renewal

theory also yields E(s -b) -E 2/2 Es , which proves uniformtheryalo ieds£( T - )  gT+ T+

integrability. (The uniform integrability may alternatively be proved



from first principles by an elaboration of the indicat'ed idea for

proving Es 2< . This may be the best approach to use in Lemma 4

below.) 
+

Lemma 2. For each c >0, P{Rm > cm 2  - o(m 2)

Proof. By the Markov inequality

I I

P{R= > Cm2} D , 2 f 1/2 Rm dP

I {Rm
}

which is o(m 2) by Lemma I.

Lemma 3. Let m! - m(a - (log m) ) as in the proof of Theorem 1.

Then as m - c
I I

PIMl < T < M, s < (C-x)m -

and11
Pfm1 < T < m, s m , +x2 . o(

Proof. By Lemma 2

I 1Pfm, < T < M, sm > (+x)M2 _ efm I < T < M, R < Lxm M, s m > (;X)m 
2

2 xm 1  o2 

So(m 2) < sup PIS > - + 2
sn-n 2

s u p P f ~ -n -1 > L l o g m l + o m 2
-m UI <n<m n

-

which is easily seen to be o(m 2) by Nagaev's (1965) improvement of

the Berry-Esseen theorem or by the related result of Petrov quoted

earlier. A similar but easier argument shows that the first probability

in Lena 3 is also o(m- /2

• . ---- -:-' -F ... - ] --" T6



3.. The case E x1 4 0

When Ex1 4 0 , results analogous to Theorem I are more complicated

technically. Although it is probably possible to formulate a comprehens-

ive theorem, it would be extremely cumbersome. Therefore, in this section

we briefly discuss two important special cases: (i) when the distribution
of x I can be imbedded in an exponential family, and (ii) when Ex ! is

a location parameter. Although the treatment of these two cases is

slightly different, it should be apparent that modulo certain technical-

ities the methods can be applied to other similar problems.

To consider briefly the simpler case of an exponential family,

suppose that the distribution of x is given by Fo(dx) -

exp[ex - *(O)]F (dx), where F0 is a strongly non-lattice distribution

having mean 0 and variance I . It is easily seen that 0(0) - 0,
*'(O) Eexi . and "(e) - vare(xI). By taking F to have mean 0

0

* has been standardized so that *'(0) - 0 , and thus sgn Eexi I sgnO.

For e 4 0 (01 > 0) it will be assumed that there exists a

oI > 0 (60 < 0), necessarily unique for which (6o0) = 4001) )

The basic identity (6) remains true and in the obvious notation

becomes
II

(10) PO{T < m, Sm < (-x)M 2 2 Fe,m-x(-xm2 _ R) dP .
(T<m}

However, (7) must now be altered. Assume to be specific that 8 0 0

and write O! for 8 . It is easy to see from the exponential family

structure that for every function h > 0 such that h I{T-n is

B(x, ., xn) measurable for all n ,

f h dP0  - f h expf-(e1-0o)s }dP e
0 (T<M)

and hence

goa-7



(81 -8)b ( )b
e Pe Isim > (C+x)m} e 0 [I-60 0b .I-(I- (m2 -R) IdP

o fT<m} - m-t o

(II)

If (-F om r (xm2_Rm) Iexp[-( I-Oe0)Rm IdP a{r<m}1

From (10) and (11) one obtains the following analogue of (8):

I ~(e -eo)b

Pe IT 4 m, Sm < (Z-X)m 2 1 . e 0 asi > ( +x)m2 1

-(e8-e)R II
- fe 0~ m[ I-F (xm2 _R ) F -- 2_ )Id?
m M-T m Fo IM-

_11'

A similar identity holds for P. fT < m, Sm < ( -x)m

Modification of these identities and subsequent expansion as in

the proof of Theorem I shows that if (86- o) - m , thenI I

(1 e I{T < M, SM < (C-X)M 2 1 exp[2C (;+m 2 )][1 _ 0(;+x+&)]
(12) 1 . I

- e2 E; - 2 ( (+x+0)[20 + (y/6)c(-x) + x- 2 2 I + o(m 2)

For e the result is formally identical provided E is defined as

0
+1/2

- m/(8 1-8) . The details of these calculations have been omitted.

(For the ideas justifying a version of Lemma I in this context, see

Siegmund, 1979.)

Since the right hand side of (12) makes sense provided only that

the x's have a finite third moment, the exponential family assumption

appears to be much too strong. However, the likelihood ratio of the

exponential family plays an important role in the derivation of (12),

and avoiding its use raises some additional technical problems.

8



To minimize the number of unpleasant technicalities it will be

assumed that e is a location parameter (which is further restricted

below to be non-negative). Hence let F denote a continuous strongly'non-

lattice distribution function having mean 0, variance 1, and finite

third moment y . Let F (x) = Fo (x-) , and let F be the n-folde e,n

convolution of F with itself. Let P8 denote the probability

measure under which x I,x2... are independent with common probability

distribution Fe Except for the indicated convergence in distribution,

the following generalization of Lemma I may be proved by the method

suggested in the parenthetical remark at the end of the proof of

Lemma 1. The details are omitted.

Lemma 4. As 6 - 0, f s XdPe- Eos A for al O < A <2 .
f.o) T+ 6 +

Let C > 0 and e= m- 12 for some fixed E > 0 .Then the

P distibutions of (s - Cm1/2) converge to the distribution with

density function (EOsT Po{ST > y) and have uniformly integrable

first moments.

Assume now that e m for some fixed E > 0 . The identity

(30) remains true in the present context. However, instead of (11)

consider

I I

(13) f exp(-2&y)P 8{smE ( +dy)m2} = 2 [ f exp(-2Ey)F ,m_(m 2dy-R m)]dP,

(x,-) (x,-)

which in the exponential family model is actually equivalent to (1I).

From (10) aad (13) one obtains the following analogue of (8):

P {T < m, sm < (C-x)m
2 } = f exp(-2Ey)P8 {sm E (C+dy)m

2

(14) (x,-)

- f [ f exp(-2Ey)F mT(m dy-R ) -F ,m_(-xm -Rm)]dP
{rMl (x,-)

9



With the aid of Lemma 4, this identity may now be expn&A:Id along

established lines. (Expansion of the inte-"i on the left hand side

of (13) and the inner integr-i on the right hand side is facilitated

by integration by parts, application of Petrov's theorem, and integra-

tion back by parts, which has the formal effect of expanding F0  as6,n

if it had a density which had the appropriate local expansion.)

In this case the resulting asymptotic expansion is as m +

I I

PefT < M, sm < (C-x)M } = expf2 [ +m 2 ( +2y c/3)I}[l- D(+x+ )3

S2 e2& +x+) + (y/6)[(x+)
2 -2 1+4 2]} + o(m 2)

4. Brownian motion

Our first approach to studying the problems of this paper involved

a different method, which unfortunately seems to be more complicated

and to require stronger assumptions than the method of Sections 2 and 3.

On the other hand, it seems conceptually simpler and can be used

formally to construct the answers to problems where none is known in

advance. By way of contrast, one must know what the dominant term

in (5) is in order to add and subtract it in (6) to implement the proof

of Theorem I. If one proceeds formally to expand (6), he gets the wrong

answer.

To illustrate our original method in a very simple setting, we

apply it in this section to give a simple derivation of the principal

probabilistic result of Anderson (1960). The argument is constructive

in the sense that the process of successive reflection, which is

usually the difficult part of two-boundary problems, is accomplished

in a purely mechanical way by means of a simple recursion.

Let fX(t), 0 < t < 1} denote standard Brownian motion and

for I < 0 < 2 and I + n ) 2 + 2 define T inf{t: X(t) f

i+it for i I or 2 }. We shall calculate

IO
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(15) P{T < 1, X(T)- 2 +n 2 T I X(i)- i}

(except for the case v - r, + " + 2. There is no loss of

generality in assuming 0 < + n because in the contrary case

one can use the argument to calculate the complementary probability,
namely

P{T < 1, X(T) + n T I X(1) -

Let P denote the conditional distribution of X(t), 0 < t < I

given that X(1) - p Then the probabulity in (15) equals

P{IT < 1, X(T) 2 +n Tj

Let F(t) = B(X(s), s < t) . For any t < I and i P the measures

P and P contracted to F(t) are mutually absolutely continuous

with an easily computed likelihood ratio:

dPp !UI ))]/)-It PU (1-t)} I L (X(t).tt; P.1 .
dP 12t

say. Hence by standard likelihood ratio (or martingale) arguments

P UIT < 1, X(T) - C2 +n 2 T }  L(r 2 +n 2T,T;u,uI )dP
SX{T<I,X(T)- 2 +n2T}!

From (16) one easily sees that the choice of v for which

2 
+ n

2T - 1T(v+uI) C 2(I-T) , i.e. v| - 2(C2 +n2) - P leads to

(17) PU{T < i, X(T) - 2+?1211I- exp[-2C 2 ( 2 n2-p)IP U{T < I, X(T) C 2 *n 2 T}.

Since this choice of I exceeds C2+ n2 (by virtue of the assump-

tion V < 2 , P {T < 1} - I ; and hence (17) may be rewritten

2 2
I



(18) P {T< I, X(T) = i2 +n2 T} =exp[-2 2 ( 2 r 2 -i ) ] [ l -P I{T< I X(T) =T

The identity (18) may now be used recursively to calculate (15), sin~e

by the same argument

(19) P IT < 1, X(T). 4l+niT }  exp[-2Cl(4 l n+p-2(C2+n2))

[I - P IT < 1, X(T) = T ,

where P2 = 2( + n n 2-n ) + 1 < (; + n ) + etc.
21 1 2 2 1 1

In general the result of carrying out this computation is an infinite

series of terms which alternate in sign. For the very special case

C1 + nl = C2 + 2 , it turns out that v2 - p ; and it is only necessary

to solve the two equation (18) and (19) simultaneously to obtain

exp{-2C (C2+n2-10)}-!

PIT < , X(T) = 2+i2T} = exp(2 ( 2 _rl(2+n2-_ )}_:-

(cf. equation (4.24) of Anderson, 1960 for this result as well as the

answer in the general case).

12
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